Bluetooth 4 !cheat cheats ios (iphone 4, 4S, 5, 5S, 6, 6S, 6Plus) download

Bluetooth 4 !cheat cheats ios (iphone 4, 4S, 5, 5S, 6, 6S, 6Plus) download

download

index

 

Bluetooth 4 !cheat cheats ios (iphone 4, 4S, 5, 5S, 6, 6S, 6Plus) download

You can send Bluetooth all files without limits on other Iphone devices, Ipad, and on the android system.

ABOUT BLUETOOTH:

Bluetooth is a wireless technology standard for exchanging data over short distances (using short-wavelength UHF radio waves in the ISM band from 2.4 to 2.485 GHz from fixed and mobile devices, and building personal area networks (PANs). Invented by telecom vendor Ericsson in 1994, it was originally conceived as a wireless alternative to RS-232 data cables. It can connect several devices, overcoming problems of synchronization.

Bluetooth is managed by the Bluetooth Special Interest Group (SIG), which has more than 25,000 member companies in the areas of telecommunication, computing, networking, and consumer electronics. The IEEE standardized Bluetooth as IEEE 802.15.1, but no longer maintains the standard. The Bluetooth SIG oversees development of the specification, manages the qualification program, and protects the trademarks. A manufacturer must meet Bluetooth SIG standards to market it as a Bluetooth device. A network of patents apply to the technology, which are licensed to individual qualifying devices.

The development of the “short-link” radio technology, later named Bluetooth, was initiated in 1989 by Nils Rydbeck, CTO at Ericsson Mobile in Lund, Sweden, and by Johan Ullman. The purpose was to develop wireless headsets, according to two inventions by Johan Ullman, SE 8902098-6, issued 1989-06-12 and SE 9202239, issued 1992-07-24. Nils Rydbeck tasked Tord Wingren with specifying and Jaap Haartsen and Sven Mattisson with developing. Both were working for Ericsson in Lund. The specification is based on frequency-hopping spread spectrum technology.

The name “Bluetooth” is an Anglicised version of the Scandinavian Blåtand/Blåtann (Old Norse blátǫnn), the epithet of the tenth-century king Harald Bluetooth who united dissonant Danish tribes into a single kingdom and, according to legend, introduced Christianity as well. The idea of this name was proposed in 1997 by Jim Kardach who developed a system that would allow mobile phones to communicate with computers. At the time of this proposal he was reading Frans G. Bengtsson’s historical novel The Long Ships about Vikings and King Harald Bluetooth. The implication is that Bluetooth does the same with communications protocols, uniting them into one universal standard.

Bluetooth operates at frequencies between 2402 and 2480 MHz, or 2400 and 2483.5 MHz including guard bands 2 MHz wide at the bottom end and 3.5 MHz wide at the top. This is in the globally unlicensed (but not unregulated) Industrial, Scientific and Medical (ISM) 2.4 GHz short-range radio frequency band. Bluetooth uses a radio technology called frequency-hopping spread spectrum. Bluetooth divides transmitted data into packets, and transmits each packet on one of 79 designated Bluetooth channels. Each channel has a bandwidth of 1 MHz. It usually performs 800 hops per second, with Adaptive Frequency-Hopping (AFH) enabled. Bluetooth low energy uses 2 MHz spacing, which accommodates 40 channels.

Originally, Gaussian frequency-shift keying (GFSK) modulation was the only modulation scheme available. Since the introduction of Bluetooth 2.0+EDR, π/4-DQPSK (Differential Quadrature Phase Shift Keying) and 8DPSK modulation may also be used between compatible devices. Devices functioning with GFSK are said to be operating in basic rate (BR) mode where an instantaneous data rate of 1 Mbit/s is possible. The term Enhanced Data Rate (EDR) is used to describe π/4-DPSK and 8DPSK schemes, each giving 2 and 3 Mbit/s respectively. The combination of these (BR and EDR) modes in Bluetooth radio technology is classified as a “BR/EDR radio”.

Bluetooth is a packet-based protocol with a master-slave structure. One master may communicate with up to seven slaves in a piconet. All devices share the master’s clock. Packet exchange is based on the basic clock, defined by the master, which ticks at 312.5 µs intervals. Two clock ticks make up a slot of 625 µs, and two slots make up a slot pair of 1250 µs. In the simple case of single-slot packets the master transmits in even slots and receives in odd slots. The slave, conversely, receives in even slots and transmits in odd slots. Packets may be 1, 3 or 5 slots long, but in all cases the master’s transmission begins in even slots and the slave’s in odd slots.

The above is valid for “classic” BT. Bluetooth Low Energy, introduced in the 4.0 specification, uses the same spectrum but somewhat differently; see Bluetooth low energy#Radio interface.

 

A master Bluetooth device can communicate with a maximum of seven devices in a piconet (an ad-hoc computer network using Bluetooth technology), though not all devices reach this maximum. The devices can switch roles, by agreement, and the slave can become the master (for example, a headset initiating a connection to a phone necessarily begins as master—as initiator of the connection—but may subsequently operate as slave).

The Bluetooth Core Specification provides for the connection of two or more piconets to form a scatternet, in which certain devices simultaneously play the master role in one piconet and the slave role in another.

At any given time, data can be transferred between the master and one other device (except for the little-used broadcast mode.[citation needed]) The master chooses which slave device to address; typically, it switches rapidly from one device to another in a round-robin fashion. Since it is the master that chooses which slave to address, whereas a slave is (in theory) supposed to listen in each receive slot, being a master is a lighter burden than being a slave. Being a master of seven slaves is possible; being a slave of more than one master is only possible on more advanced devices which conform with Bluetooth 4.1 onwards. The specification is vague as to required behavior in scatternets.

Bluetooth is a standard wire-replacement communications protocol primarily designed for low-power consumption, with a short range based on low-cost transceiver microchips in each device. Because the devices use a radio (broadcast) communications system, they do not have to be in visual line of sight of each other; however, a quasi optical wireless path must be viable. Range is power-class-dependent, but effective ranges vary in practice. See the table on the right.

Officially Class 3 radios have a range of up to 1 metre (3 ft), Class 2, most commonly found in mobile devices, 10 metres (33 ft), and Class 1, primarily for industrial use cases,100 metres (300 ft). Bluetooth Marketing qualifies that Class 1 range is in most cases 20–30 metres (66–98 ft), and Class 2 range 5–10 metres (16–33 ft).

The effective range varies due to propagation conditions, material coverage, production sample variations, antenna configurations and battery conditions. Most Bluetooth applications are for indoor conditions, where attenuation of walls and signal fading due to signal reflections make the range far lower than specified line-of-sight ranges of the Bluetooth products. Most Bluetooth applications are battery powered Class 2 devices, with little difference in range whether the other end of the link is a Class 1 or Class 2 device as the lower powered device tends to set the range limit. In some cases the effective range of the data link can be extended when a Class 2 device is connecting to a Class 1 transceiver with both higher sensitivity and transmission power than a typical Class 2 device. Mostly, however, the Class 1 devices have a similar sensitivity to Class 2 devices. Connecting two Class 1 devices with both high sensitivity and high power can allow ranges far in excess of the typical 100m, depending on the throughput required by the application. Some such devices allow open field ranges of up to 1 km and beyond between two similar devices without exceeding legal emission limits.

The Bluetooth Core Specification mandates a range of not less than 10 metres (33 ft), but there is no upper limit on actual range. Manufacturers’ implementations can be tuned to provide the range needed for each case.

To use Bluetooth wireless technology, a device must be able to interpret certain Bluetooth profiles, which are definitions of possible applications and specify general behaviours that Bluetooth-enabled devices use to communicate with other Bluetooth devices. These profiles include settings to parametrize and to control the communication from start. Adherence to profiles saves the time for transmitting the parameters anew before the bi-directional link becomes effective. There are a wide range of Bluetooth profiles that describe many different types of applications or use cases for devices.

Bluetooth exists in many products, such as telephones, tablets, media players, robotics systems, handheld, laptops and console gaming equipment, and some high definition headsets, modems, and watches. The technology is useful when transferring information between two or more devices that are near each other in low-bandwidth situations. Bluetooth is commonly used to transfer sound data with telephones (i.e., with a Bluetooth headset) or byte data with hand-held computers (transferring files).

Bluetooth protocols simplify the discovery and setup of services between devices. Bluetooth devices can advertise all of the services they provide. This makes using services easier, because more of the security, network address and permission configuration can be automated than with many other network types.

A personal computer that does not have embedded Bluetooth can use a Bluetooth adapter that enables the PC to communicate with Bluetooth devices. While some desktop computers and most recent laptops come with a built-in Bluetooth radio, others require an external adapter, typically in the form of a small USB “dongle.”

Unlike its predecessor, IrDA, which requires a separate adapter for each device, Bluetooth lets multiple devices communicate with a computer over a single adapter.

For Microsoft platforms, Windows XP Service Pack 2 and SP3 releases work natively with Bluetooth v1.1, v2.0 and v2.0+EDR. Previous versions required users to install their Bluetooth adapter’s own drivers, which were not directly supported by Microsoft. Microsoft’s own Bluetooth dongles (packaged with their Bluetooth computer devices) have no external drivers and thus require at least Windows XP Service Pack 2. Windows Vista RTM/SP1 with the Feature Pack for Wireless or Windows Vista SP2 work with Bluetooth v2.1+EDR. Windows 7 works with Bluetooth v2.1+EDR and Extended Inquiry Response (EIR).

The Windows XP and Windows Vista/Windows 7 Bluetooth stacks support the following Bluetooth profiles natively: PAN, SPP, DUN, HID, HCRP. The Windows XP stack can be replaced by a third party stack that supports more profiles or newer Bluetooth versions. The Windows Vista/Windows 7 Bluetooth stack supports vendor-supplied additional profiles without requiring that the Microsoft stack be replaced.

Apple products have worked with Bluetooth since Mac OS X v10.2, which was released in 2002.

Linux has two popular Bluetooth stacks, BlueZ and Affix. The BlueZ stack is included with most Linux kernels and was originally developed by Qualcomm. The Affix stack was developed by Nokia.

FreeBSD features Bluetooth since its v5.0 release.

NetBSD features Bluetooth since its v4.0 release. Its Bluetooth stack has been ported to OpenBSD as well.


This !cheat Bluetooth include:

You can send Bluetooth all files without limits on other Iphone devices, Ipad, and on the android system

 

Please buy me a coffee: